

The Déductions project
Architecture

J.M. Vanel

Summary

● Demonstration
● Artificial Intelligence
● Data flux (user)
● Top level sequence diagram
● The N3 language
● Rules data flow (implementation)
● EulerGUI IDE
● The Déductions project
● Conclusion

EulerGUI and Déductions
Demonstration

● Download EulerGUI
● Java Swing application generator from OWL

model and N3 logic rules:
Deduction project How To

http://sourceforge.net/projects/eulergui
http://deductions.svn.sourceforge.net/viewvc/deductions/html/GUIgenerator.html

Demonstration

● http://eulergui.svn.sourceforge.net/viewvc/eulergui/trunk/eulergui/html/documentation.html
● Modèle importé quelconque en OWL
● Montrer le modèle dans Protégé
● On choisit un point de départ (editedClass)
● On génère une application avec formulaires de

saisie, et qui sauve au format N3.
● Fonctionalités avancées dans les champs de

saisie
● Montrer une règle de validation en N3

http://eulergui.svn.sourceforge.net/viewvc/eulergui/trunk/eulergui/html/documentation.html

AI

● Small data size => larger rule base possible
● Choose the right engine (Drools)
● Choose the right file format : N3
●

● FOL, Description Logic
● difference between RETE engine and full logic

engine (wumpus example, disjunction in
consequent)

OO and KB

● Object Oriented for the business data has lived
– In OO, data model, bizz rules, infrastructure are

mixed

● time for knowledge bases !
● OO remains fit for the infrastructure code

though
● A Copernican revolution !

The data flux (user p.o.v.)
Re-use current technology

Domain model

SQL

UML

POJO

RDFS, OWL

Rules

N3 SWRL

Rewerse

Prolog

Drools

Déductions

Abstract
application

Concrete
platform

Swing PHP

eclipse .Net

JDBC Sesame

Web Services

Let the Models Come to us

● SQL
● UML
● EMF
● Pojo (Plain Old Java Objects)
● XML Schema

Will have input connectors for all dialects.

Let the Ontologies Come to us

● RDF
● OWL
● KIF
● Classic
● TPTP
● ...

Will have input connectors for all dialects.

Let the Rules Come to us

● N3
● SPARQL (queries only)
● Drools
● Prolog
● SWRL, RIF, Rewerse, ...
● ...

Will have input connectors for all dialects.

But What is the Esperanto? N3
Why N3?
● can represent data, classes and properties,

rules.
● can represent UML, XMI, and SQL and more
● naturally integrates RDF and OWL from W3C
● Introduction to N3 and RDF:

http://www.w3.org/2000/10/swap/Primer

● tutorial introduction to N3 rules:
http://www.w3.org/2000/10/swap/doc/Rules

● compare formats N3, SQL, UML,…
http://www.w3.org/2000/10/swap/doc/formats

http://www.w3.org/2000/10/swap/Primer
http://www.w3.org/2000/10/swap/doc/Rules
http://www.w3.org/2000/10/swap/doc/formats

Panorama: the metamodel stack

W3C land OMG land AI

FOL
Prolog

OWL
UML

RDFS
RDF, N3 XMI

N3 logic

Description
Logic

MOF, eCore

●Expressivity is is higher up
●RDF can link anything

Top level sequence diagram

Designer Rule JVM Runtime End GUI
 | Engine Runtime Storage User
 | | | | . .
 add bizz class>| | | . .
 add property >| | | . .
 | |new object >| | . .
 | |assign prop>| | . .
 | |method call>| | . .
 | | |// GUI | . .
 | | |// running | | |
 add bizz rule >| | |
			event>
			<storage event
			invalid exceptio>

Notes:
● Runtime Storage is also a Rule Engine
● generated GUI possibly includes multi-view for the underlying bizz
objects, including the update logic

Design time Rule Engine

● Designer enters/imports:
– a domain model (classes and properties)

– Business rules

– A small application specification

● The rest is background knowledge (supporting
ontologies and rules)

Current rules data flow

N3 result

N3 application spec. Domain Model (OWL as N3)

Swing GUI

Instantiator.java

GUIHelper.java

TripleStoreDrools

Rule engine

Supporting ontologies stack

● software applications

● business applications TODO

● generic GUI: widget/component, callback/action; this is a high-level model
describing the GUI from the user point of view

● user interactions: user actions: create/update/delete, query/view, user
goals/intentionsstill sketchy; not yet used

● abstract convergence platform; software application, generic GUI, etc, are to
be translated in terms of it - TODO

● concrete platforms (Java SE, Java J2EE, SWI Prolog + XPCE, Python, PHP,
Ruby on Rails, ...); this is the low level layer

● software purposes (point to most human activities being kind of
management or viewing/search/navigation) ; for now 2 properties in software
applications

● software project (software development) : classes(ontology), rules, purpose,
platform, libraries, deployment, human roles, team, version, realease, test,
specification, documentation, plus notions covered by UML 1 and 2 - TODO

Application-->GUI rules

editedClass *
SoftwareApplication<>owl:Class<>rdf:Property
| | |
| 1 1 |* |*
DefaultPane<>Form<>InputWidget
ObjectInputWidget
DatatypeInputWidget
 | |
 Label |
 |
 TextField

Current rules flow

gui_generic.n3

java_library.n3

app_gui-rules.n3

software_applications.n3

java_projection-rules.n3

Domain Model (OWL as N3)

The blue rectangles bear the name of class
model for the N3 data.

Rule example 0

when C has a parent P, then C is the child of P :

{

 ?C :hasParent ?P .

} => {

 ?P :hasChild ?C .

} .

?C, ?P
are universally qualified

Rule example 1

add a field in the form for each property of a
class:

{ ?CLASS gui:hasForm ?FORM .

 ?PROP rdfs:domain ?CLASS .

} => {

 ?FORM gui:hasField ?FIELD .

 ?FIELD gui:inputWidgetSpecification ?PROP .

} .

?CLASS, ?FORM,
?PROP are universally
qualified

FIELD is existentially
qualified

Rule example 2

the type of the field depends on the type of the
property: ObjectProperty or DatatypeProperty

{

 ?FIELD gui:inputWidgetSpecification ?PROP .

 ?PROP a owl:DatatypeProperty .

} => {

 ?FIELD a gui:DatatypeInputWidget .

} .

OWL implemented with N3 logic

● as part of the Euler project, a library of N3 rules
implements the logic of OWL and RDF Schema
(transitive property, inheritance, etc), and other
goodies, see:

● http://eulersharp.svn.sourceforge.net/viewvc/eulersharp/trunk/2003/03swap/rpo-rules.n3
●

● {?P a owl:TransitiveProperty.
● ?S ?P ?X.
● ?X ?P ?O. } => { ?S ?P ?O }.

http://eulersharp.svn.sourceforge.net/viewvc/eulersharp/trunk/2003/03swap/rpo-rules.n3

Euler GUI - Use cases

Open any number of RDF / OWL / N3 documents
● test and debug the rules using the 3 rule engines

(Drools, Euler, CWM)
● Generate an application (Déductions framework)
● export all project as :

– a set of Drools packages, plus the facts in
XMLEncoder format

– A command line for the Prolog engine

The Deductions project

● Application generation
– platform independence

● User-friendliness : the Good Servant
● component-based application building:

Intelligent modularity
● Comprehension without prior protocol

Advanced GUI features
● GUI rules: building components tree, behavior:

cardinalities, inheritance, constraints (solve to infer
values),

● Advanced features: propagate edits or not (money Xfer
between accounts), has few values, graph view (following
user past actions, lens), zip paradigm

● record user actions, and show some simple feed-back,
maybe last object creations used for suggesting object link

● show table view (like relational DB table)

● show tree view : 1. follow object properties; 2. follow
subclassOf , then rdf:type

● demonstrate UML front-end

GUI: the good servant

● every user action should be recorded
● exploit to infer her/his intentions
● Also draw all consequences from the model

and data

Intelligent modularity : letting
valences connect

● Re-use the wealth of existing libraries and
components

● Tag libraries with their purpose
● Add protocol state machines
● Then we can infer actual call sequence and

automate application building
● Also possibility to find libraries and applications

by their functionalities

Comprehension without prior
protocol

● Between human and computer
● Between computers
● Leverage on linguistics
● opencyc.org, WordNet, upper level ontologies:

Sumo, Milo, ...
● ACE project (Attempto Controled English)

Conclusion

● Copernic revolution: the infrastructures and OO
techniques are at the periphery, Ontologies and
rules and at the center

● Reduce the Babel effect effect in computer
science by applying AI techniques

● Automatize application building will allow IT
projects to concentrate on essential matters:
domain model and business rules

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29

